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Introduction 

Alzheimer’s disease (AD) is the most common cause of dementia in the elderly 

and is characterized by loss of memory and other cognitive functions. It is a 

neurodegenerative disease characterized by decreased cognitive function in 

patients due to forming Aβ peptides and neurofibrillary tangles (NFT) in the brain 

(1). AD and other age-related memory disorders have always attracted the 
attention of researchers worldwide as a slowly progressive disorder characterized 

by the appearance of neurofibrillary tangles, neural plaques, rapid loss of 

synapses, degeneration of primary cholinergic neurons, and impaired reasoning. 
Planning, perception, and thinking are defined. Moreover, it is associated with 

some metabolic disorders (2,3). This disease becomes a big challenge for the 

health and social care system and a significant economic burden in the future (4). 
Therefore, the need to develop new treatments can reduce this risk. 

Acetylcholinesterase, known as AChE, is an essential enzyme in the family of 

serine hydrolases that plays a crucial role in memory and cognition (5,6). 
Cholinesterase is one of the targets used in the design of new drugs for the 

treatment of AD  since the nerve cells that secrete this neurotransmitter substance 

are among the first cells affected by the pathological changes of AD and are 
destroyed because the cholinergic neurons located in the basal forebrain, 

including the neurons that form the basal nucleus form Meinert, which is severely 

lost in AD. Therefore, it seems that preventing the breakdown of acetylcholine 
by inhibiting the cholinesterase enzyme can be vital in stabilizing memory and 

thinking power (7). So far, only seven drugs, capractamine, donepezil, 

galantamine, huperzine, memantine, rivastigmine, and tacrine (8,9), have been 

approved by the Food and Drug Administration (FDA) for treating AD. Due to 
numerous side effects such as hepatotoxicity, gastrointestinal disorders, 

dizziness, diarrhea, vomiting, nausea, and pharmacokinetic disadvantages, there 

are many limitations in using these treatment options for AD, a significant reason 
for discovering new, more effective compounds (10). Growing evidence shows 

that natural compounds are useful for studying the inhibitory effect on AChE 

activity. Researchers are constantly trying to find new medicines that, in addition 
to having better effects, have fewer side effects, and plants have always been 

essential sources for finding new drugs with acetylcholine enzyme inhibitory 

effects, which have been of interest. Plants provide materials rich in bioactive 
compounds, which can be considered a basic strategy for treating various 

diseases, such as AD (11). Thus, during various studies, several plant chemicals, 

namely alkaloids, pregnane glycosides (cynancoids), stilbenes, triterpenes (12), 

ursane (13), and xanthones have shown AChE inhibitory activity. In general, 

many families of different plants, such as Asteraceae (14), Menispermaceae (15), 
Malvaceae (16), Zingibraceae (17), and Hypericaceae, have been subjected to 

various studies, and the extracts and secondary compounds obtained from their 

different parts have been able to get promising results, to inhibit the activity of 
the acetylcholinesterase enzyme and to provide researchers with the treatment of 

AD. The development of new drugs with many clinical applications is needed to 

reduce the consequences of many diseases. Today, scientists generate large sets 
of 3D structural data and several leaders and reference therapeutic compounds. 

STEP1 
Preparation of Acetylcholinesterase complex with Donepezil enzyme files and ligand 

design 

STEP2 Preparation of receptor-ligand for the pharmacophore process 

STEP3 Pharmacophore modeling 

STEP4 Checking the stability of the receptor composition 

STEP5 Docking and visualization of ligand/receptor interactions 

STEP6 
Investigating the ADME characteristics of the reference compound and selected 

superior ligands 

 

Figure 1. Ordering the steps of the work process 
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What is new here? 

In this research work, the basis of preparation of inhibitory compounds is 

natural compounds originating from some medicinal plants, which "Have 
fewer side effects and lower costs compared to chemical treatments." 
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Hence, the drug discovery process requires virtual screening of drugs, molecular 
docking, and molecular dynamics simulation studies to deal with such a large 

data set and design new therapeutic compounds. Virtual screening combined with 

molecular and binding modeling helps to develop new enzyme inhibitors and 
pharmacophores that bind to receptor sites (18). In this study, natural molecules 

were collected and identified based on qualitative and quantitative 

pharmacophoric characteristics and AChE inhibition through databases 
containing natural compounds and the pharmite server. The analysis results and 

the best inhibitory compounds were identified for research and subjected to 

additional analysis and investigation. 

 

Methods 

Preparation of Acetylcholinesterase Complex with Donepezil enzyme files 

and ligand design 

This study first prepared the PDB structure (three-dimensional structure) of the 

Acetylcholinesterase Complex with Donepezil using its access code from the 
RCSB database. Then, this complex was selected as the leader compound for the 

virtual pharmacophore search. 

Preparation of receptor-ligand for the pharmacophore process 

In this step, using the pharmit server, the complex containing the drug-inhibiting 

receptor was prepared for the pharmacophore process, and the receptor was also 

prepared through SPDBV.4.1 and MVD software. 

Pharmacophore modeling 

In this step, inhibitor/receptor files were called by ZINC Pharmer and Pharmit 

databases and used as a template to find new inhibitory ligands to inhibit the 
desired 7E3H enzyme. Then, all the inhibitory ligands were retrieved from these 

databases based on this main inhibitory template called donepezil, and the ligands 

that had a high similarity to the template ligand were selected for the docking 

process so that donepezil was confirmed. It searches databases containing natural 

compounds and finds natural ligands similar to donepezil’s model drug for 

docking.  

Checking the stability of the receptor composition 

At this stage, using Iuperd2 software, the sequence structure of the renin enzyme 

file and its stability level were investigated to ensure stable inhibition with 
inhibitory ligands (19). 

Docking and visualization of ligand/receptor interactions 

At this stage, using MVD and AutoDock vina software, the docking process 
between the receptor and a number of the best inhibitory ligands was selected 

from among all the selected ligands by the pharmacophore. Finally, 

ligand/receptor interactions were shown by Discovery Studio software. 

Investigating the ADME characteristics of the reference compound and 

selected superior ligands 

At this stage, using some software and servers such as molsoft, PKCSM swiss 
ADME, and ADMEtlab 2.0, molecular properties and drug similarity, toxicity, 

absorption, metabolism, secretion, and release of inhibitory ligand compounds 

were investigated. 

Results 

Results of preparation of Acetylcholinesterase Complex with Donepezil 

enzyme files and ligand design 

In this study, the PDB structure (three-dimensional structure) of the 
acetylcholinesterase enzyme compound with the access code (7E3H) was 

prepared from the RCSB database (20). Then, by studying various articles on the 

inhibitory compounds of acetylcholinesterase, the donepezil compound, the vital 
approved drug to inhibit this enzyme, was selected as the leader compound for 

the virtual pharmacophoric search (Figure 2). 

The results of receptor-ligand preparation for the pharmacophore process 

At this stage, using SPDV-4.1 and MVD software, the studied ligands and 

receptor were minimized in terms of energy, and the heteroatoms of the receptor 

were removed to perform the pharmacophore process. Furthermore, the leader 
ligand and its receptor, the enzyme acetylcholinesterase, were prepared (Figure 

3). 

Results of pharmacophore and virtual search 

The acetylcholinesterase enzyme, along with its inhibitor Donepezil (7E3H), is 

listed in the Pharmit database. Essential features for creating pharmacophore 

models in the desired complex, such as aromatic rings, hydrophobic bonds, 
hydrogen bond donors, and hydrogen bond acceptors, were analyzed (21). Thus, 

through the pharmit server and the databases of natural compounds in it, based 

on the characteristics of the descriptors of the model complex, among more than 
88,619 ligands in this server, finally, based on the characteristics and degree of 

similarity with the model ligand, Donepezil, from the database of natural 

compounds, six ligands were prepared and selected for further analysis for the 
molecular docking process, all of which followed Lipinski’s five rules and had 

good ADMET properties. 

The results of investigating the stability of the receptor composition 

The results of the IUPred2 software show a stable structure and no disorder in 

the receptor in the binding sites between the receptor and the studied ligands 

(Figure 4). 

Docking results and display of ligand/receptor interactions 

During the docking process, the complexes with the lowest energy were selected 

from among the results (Table 1). 
Then, with the help of different software such as Discovery Studio, all the 

interactions resulting from docking selected top ligands with acetylcholinesterase 

enzyme were illustrated. All the essential links participating in these interactions 
were displayed, and finally, the vital amino acids participating in all the ligands 

were shown and identified by drawing a thermal diagram (Figure 5). 

The results of investigating the ADME characteristics of the reference 

compound and selected superior ligands 

The following results were obtained using molsoft, PKCSM, swissADME, and 

ADMEtlab 2.0 servers, investigating the molecular properties, drug similarity, 
toxicity, absorption, metabolism, secretion, and release of inhibitory ligand 

Figure 2. The pharmaceutical structure of Donepezil inhibitor (right image) and its complex 

with acetylcholinesterase enzyme (left image) 
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Figure 3. Energy minimization process of acetylcholinesterase enzyme structure 

Figure 4. Examining and displaying the stable and disorder-free structure of the receptor in the binding sites between the receptor and the studied ligands 
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compounds. According to the obtained results, the obtained ligands all had 

gastrointestinal absorption. In addition, ligands 1, 3, 4, and 6 had good solubility 

in fats compared to donepezil, and the obtained ligands followed Lipinski’s 
principles and had favorable solubility and acceptable pharmaceutical similarity 

(Table 2). 

 

Discussion 
Many efforts have been focused on finding new ligands based on natural 

compounds that can bind to the active site of enzymes to find stronger reversible 
inhibitors. Therefore, investigating and predicting the interactions between small 

molecules and enzyme proteins can be vital for deciphering many biological 

processes and plays an important role in discovering new drugs with fewer side 
effects. On the other hand, much evidence has shown that among the types of 

native and natural plants, the organic parts obtained from the extracts of some 

different medicinal plants have shown a significant inhibitory effect on AChE. 
Plants provide materials rich in bioactive compounds, which can be considered a 

basic strategy for treating various diseases, such as AD (22,23). However, 

nowadays, laboratory and experimental investigation of anti-enzyme properties 
of medicinal plants and their effective compounds is time-consuming, expensive, 

and with the possibility of human error. Therefore, in recent years, the 

introduction of complementary or alternative methods of experimental methods, 
such as bioinformatics and computational methods, has received much attention. 

This research used the pharmacophore process and virtual search in the format 

database, ZincPharmer. Besides, based on the pharmacophore and structural 
characteristics of the reference acetylcholinesterase inhibitor compound 

(donepezil), a large number of natural compound ligands were obtained through 

virtual search. During the molecular binding process between these ligand 
compounds, the obtained ligand was done with acetylcholinesterase enzyme, and 

the best binding energy between the ligands and the receptor was selected from 

among them (24). Among thousands of natural compounds, finally, the top six 
ligands based on the reference compound of acetylcholinesterase inhibitor 

(donepezil) were subsequently selected as a suitable binding model with AChE 

by using molecular docking methods and through various bioinformatics tools 

and based on scores. Finally, their interaction with the active site of the AChE 
enzyme was displayed using the Discovery Studio program (25). In general, 

many studies have shown therapeutic effects on AD. One study found that a group 

of plants that have been reported to have the biological effects of the abundance 
of plants rich in terpene and coumarin compounds are the plants of the genus 

Ferula. Another study found that the essential oil of Thymus vulgaris or garden 

thyme, a plant from the mint family, contains phenols such as thymol, carvacrol, 
simene, linalool, and pinene, whose anti-Alzheimer effect has been investigated, 

and proven. In other studies, it has been determined that lemon balm, with the 

scientific name L. Melissa officinalis, is a plant from the mint family used in 
traditional Iranian medicine in treating a wide range of diseases, including 

neurological diseases such as amnesia, epilepsy, paralysis, stroke, migraine, and 

vertigo. Many pharmacological studies show the neuroprotective effects of lemon 
balm and its main active ingredient (rosmarinic acid). Lemon balm exerts its 

effects with different mechanisms, including suppressing oxidative stress, 

inhibiting acetylcholinesterase, stimulating acetylcholine and GABA-A 
receptors, and inhibiting metalloproteinase-2 and monoamine oxidase enzymes 

(26). During the results of the docking process, it was shown that ligand 4, which 

had a higher binding energy than the others (VINA SCORE=-11) and with the 
acetylcholinesterase enzyme through normal hydrogen interactions with amino 

acids ARG525, GLN527, ASP404, and also through p-alkyl and alkyl bonds. 

Through HIS381, ALA397, LEU380, and ARG393, it has established important 
interactions with the acetylcholinesterase enzyme, most of which established 

bonds similar to the reference compound with the acetylcholinesterase enzyme 
(Figures 4, 5) and had a high interaction similarity with the reference ligand. The 

other top ligand was ligand 2 (VINA SCORE=-10), showing the most structural 

and interaction similarity with the reference inhibitory ligand. This ligand has 
three hydrogen bonds, LEU380, GLN527, and ARG525, and two 

hydrogen/carbon bonds, TYR382. In addition, HIS381 had pi-alkyl interactions,   

 

Table 1. Information related to the structural characteristics and energy obtained from the docking of selected ligands 

 

Natural Product ID Canonical SMILES Species Source  Structure RMSD MVD Score Vina. Score 

NPC314682 COc1ccc(cc1)CC1N(C)CCc2c1cc(OC)c(c2)OC 
Stephania 

tetrandra 
Menispermaceae 

 

0.027 -104.222 -10.2 

NPC95090 
OC[C@H]1O[C@@H](Oc2cc(O)c3c(c2)oc(cc3=O)

c2ccc(cc2)OC)[C@@H]([C@H]([C@@H]1O)O)O 

Othonna 

sedifolia 
Asteroideae 

 

0.030 -121.372 -10 

NPC26386 
COc1cc(C)cc2c1C(=O)C=C(C2=O)c1c(C)c(OC)c2c

(c1O)c(OC)c(cc2)O 

Burman 

diospyros 

burmanica 

Ebenaceae 

 

0.032 -100.038 -9.6 

NPC84076 
COc1cc(CCC(=O)/C=C(/C=C/c2ccc(c(c2)OC)O)O)

ccc1O 

Alpinia 

officinarum 
Zingiberaceae 

 

0.038 -143.373 -11 

NPC27408 
OC[C@H]1O[C@@H](Oc2cc(O)c3c(c2)oc(cc3=O)

c2ccc(cc2)OC)[C@@H]([C@H]([C@H]1O)O)O 
Tilia japonica Malvaceae 

 

0.038 -127.498 -10.5 

NPC470398 
CCC(C(=O)c1c(OC/C=C(/CCC(C(=C)C)OO)C)cc(

cc1O)O)C 

Hypericum 

olympicum 
Hypericaceae 

 

0.041 -129.356 -9.4 

donepezil 
COC1=C(C=C2C(=C1)CC(C2=O)CC3CCN(CC3)C

C4=CC=CC=C4)OC 
Ligand leader - 

 

- -144.775 -11.8 

 

 

 

Table 2. Results of physicochemical investigations and compliance with Lipinski’s rules of studied ligands 

 

Number ligand LIGAND NAME VINA SCORE LogP LogS MW LogD HBA HBD RBN rug-likeness model score 

1 NPC314682 -10.2 3.085 -2.852 327.180 3.209 4 0 5 1.20 

2 NPC95090 -10 1.854 -4.035 446.120 1.656 10 5 5 0.53 

3 NPC26386 -9.6 2.354 -3.567 370.140 2.417 7 2 4 0.03 

4 NPC84076 -11 2.354 -3.567 370.140 2.417 6 3 8 -0.35 

5 NPC27408 -10.5 2.071 -4.067 446.120 1.501 10 5 5 0.29 

6 NPC470398 -9.4 3.631 -3.658 378.200 3.556 6 3 11 0.38 

7 donepezil -11.8 4.191 -4.307 379.210 3.631 4 0 6 1.65 

 

https://en.wikipedia.org/wiki/Malvaceae
https://en.wikipedia.org/wiki/Hypericaceae
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Figure 5. A: Showing the interaction between the obtained ligands (numbers 1 to 6) and the drug 

Donepezil and comparing the amino acids and bonds participating in the interaction between the ligands 

and the acetylcholinesterase enzyme. B: Thermal diagram of amino acids participating in interactions. 
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and PHE531, HIS381, ALA528, ALA397, and a pi-Omid bond through TYR382 

(Figures 2-5). Another significant ligand with high similarity to the reference 

compound in terms of interactions was ligand number 5 (VINASCORE=-10.5). 
This ligand has four hydrogen bonds, ALA528, TYR382, GLN527, HIS381, and 

a hydrogen/carbon bond ASP400. In addition, it has pi-alkyl interaction with 

ALA528 and ALA397, and It has established a sigma-pi bond through TYR382 
and a pi-pi-shaped, pi-pi-stacked bond with the amino acid TYR382 (Figure 5).In 

general, among the six selected ligands, these two ligands, numbers 2 and 5, had 

the most interaction similarity with the reference ligand, and they probably show 
a good inhibitory effect, specifically ligand 5 (Figure 4B). Ligand number 2 is 

obtained from the Asteraceae family. Besides, in a study, it was found that the 

secondary compounds obtained from different parts of this family of plants, such 
as the flavonoid compounds found in Silybum marianum, show the potential to 

inhibit the accumulation of AChE and Aβ peptides (27), revealed by a series of 

assays, including AChE inhibition assays, as well as in vivo and silico docking 
studies. Mice treated with silibinin performed better than control mice in various 

tests. In addition, molecular dynamics simulations indicated that silybinin has a 

dual inhibitory function against AChE and Aβ peptide accumulation (28). In 
another study investigating the effect of the methanolic extract of another plant 

from this family called Phagnalon saxatile, the inhibitory power of various 

compounds of this extract was shown to inhibit both AChE and BChE enzymes. 
During the purification of the methanolic extract of this plant, it was found that 

this extract contains several phenolic compounds, among which luteolin and 3,5-

caffeoylquinic acid showed the strongest inhibitory activity against AChE and 

caffeic acid and luteolin against BChE (29). Furthermore, in another study, 

chloroform and methanol extracts of Pulicaria stephanocarpa from this family of 
plants were tested for AChE inhibition, and the results showed that chloroform 

extract revealed more inhibitory activity (30). Another study tested the ethanolic 

extract of Artemisia annua, four fractions, and five isolated compounds for AChE 
inhibitory activity. Two of the four fractions were effective as AChEI inhibitors. 

However, two of the five isolated compounds - artemisinin (31) and 

chrysosplantin (32) were the most potent and had the highest AChE inhibitory 
activity (33). Ligand No. 5 is a plant from the Malvaceae family, and various 

studies report the effectiveness of different species’ extracts in inhibiting the 

acetylcholinesterase enzyme. It was observed that the extract showed the effects 
of inhibiting AChE (34). In another study, the whole plant of Sida rhombifolia 

Linn was extracted with methanol, ethyl acetate, and n-hexane, and it was found 

that the n-hexane extract had the highest inhibitory effect on AChE with an 
inhibition percentage of 68.5% (35). Docking results show that each of these 

compounds interacts with residues involved in substrate selectivity and catalytic 

activity, affecting the physicochemical properties and spatial orientation in the 
binding site with the acetylcholinesterase enzyme, and the activity of 

acetylcholinesterase enzyme disrupt and inhibit esterase (36). The substitutions 

in these ligands greatly affect the lipophilicity of these ligands (37). Examining 
the relationship between the structure and activity of this ligand and the activity 

of the acetylcholinesterase enzyme showed that the presence of aromatic rings, 

hydrophobic parts, tertiary amines, rotatable bonds, and hydrogen bonds, and 
other bonds are effective in increasing the inhibitory interaction power of these 

ligands. It can be concluded that the formation of optimal hydrogen bonds in 

these compounds to increase hydrophobic interactions is one of the significant 
factors in inhibiting the various pathways activated by the activity of the 

acetylcholinesterase enzyme (38). By examining all the amino acids involved in 

the interactions between the ligands and the enzyme, it was observed that the 
three amino acids HIS381, TRP385, and GLN527 play a role in the interactions 

with the acetylcholinesterase enzyme in all ligands through different bonds, 

indicating the importance of the location of these three amino acids in the enzyme 
structure. It is acetylcholinesterase. Likewise, the molecular properties, drug 

similarity, toxicity, absorption, metabolism, secretion, and release of inhibitory 

ligand compounds were investigated using results from Molsoft, PKCSM, 
Way2Drug Swiss ADME, and ADMETlab 2.0 servers. The examined ligands 

demonstrated favorable conditions in terms of solubility coefficient (logS < -4), 

molecular weight (MW < 500), and octanol/water ratio, indicating the 

compound’s hydrophilicity (logP < 5) (Table 2).  In terms of inhibiting CYPS 

compounds, they had no inhibitory power and no hepatotoxicity, and they all had 

intestinal absorption, and in terms of crossing the blood-brain barrier, ligand 1 
could cross the blood-brain barrier like the reference compound (39). All 

selective inhibitory ligands obeyed Lipinski’s five rules. Therefore, based on the 

characteristics of the therapeutic factors of these compounds and based on the 
docking score and interaction with the remaining active site of the enzyme and 

binding ability, it was observed that all of them can be considered possible 

medicinal compounds in biological systems without any violation of the 
mentioned characteristics. (Table 2) (40). As a result, they are worth testing for 

biochemical tests and can be prescribed as a valuable drug for human 

consumption after the clinical phase processes in the laboratory with the 
necessary precautions. Although these features are significant in silico studies, 

the studies in laboratory and clinical conditions on animals must be considered 

to ensure the correctness of in silico results related to inhibitory ligands. 

 

Conclusion 

This study used theoretical and computational methods such as molecular 

docking to investigate the combination of acetylcholinesterase complex with 

designed ligands. Based on the investigation and analysis of the docking process 

done to clarify the mechanism of connection of the herbal medicine with the 
structure of AChE. The results showed that all these ligands, like donepezil, can 

interact with HIS381, TRP385, and GLN527 residues of AChE, which all fall in 

the active site or binding pocket of the active site, which may be critical to 
inhibiting its activity. The dockings support the hypothesis that these compounds 

are potentially valuable small molecule ligands for targeting/inhibiting 

acetylcholinesterases. In fact, according to the binding free energy calculation 
results, it can be concluded that these ligands can compete with donepezil. It can 

have a good competitive inhibitory effect by affecting the formation of the 

acetylcholinesterase/donepezil complex. 

On the other hand, the study on the designed ligands showed that with 

favorable interactions and lower binding energy, they form more stable 

complexes with acetylcholinesterase and can be proposed as inhibitors competing 
with donepezil in binding to this enzyme. These results are valuable for designing 

more non-covalent type inhibitors with high specificity and strong activity 

because these ligands can be suitable options for conducting experimental 
investigations to obtain new acetylcholinesterase inhibitor compounds and, as a 

result, Alzheimer’s treatment. These require laboratory and clinical procedures. 
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